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The Lagrange—Galerkin method has proved a very successful method
in computational fluid dynamics (CFD), in practice, but it has suffered
from question marks about its stability when the integrals are
approximated by quadratures. In this paper we will prove instability for
wider ranges of quadrature formulae than previously considered. We
will also introduce an approximate integration technigue on triangular
grids that cheaply recovers the unconditional stability of the
Lagrange -Galerkin maethod with no loss in accuracy. The same techni-
que can also be used for the exact projection of data from one arbitrary
triangutar grid to another, different, arbitrary triangular grid. This could
be used in grid adaptation algarithrs or in triangutar multigrid proce-
dures. © 1994 Academic Press, Inc.

1. INTRODUCTION

The Lagrange-Galerkin method is a scheme that com-
bines the method of characteristics with a standard finite
element procedure; see Benque ef al. [2], Bercovier er al.
[3.4]. Douglas and Russcil [12], Ewing eral [18],
Hasbani er of. [267, Lesaint [38], Pironneau {447, Russell
£54], and Siili [61], for exampic. There are two versions of
the scheme available, depending upon whether one travels
forwards in time along the particle trajectory or backwards.
In Morton and Pricstley [41] these two schemes were
labelled the weak Lagrange-Galerkin method and the
direct Lagrange-Galerkin method. In this paper we shall
only concern ourselves with the direct Lagrange-Galerkin
method, although everything proved here can be equally
well applicd to either version of the scheme.

Below we shall briefly describe the derivation of the
Lagrange Galerkin scheme. In Section 2 new resulis about
the instability of quadrature will be proved. These show that
even wider classes of interpolatory quadrature formulae
than previously realized are unstable when used in conjunc-
tion with the Lagrange-Galerkin method. This makes the
search for a stable implementation of the method on tri-
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angles if the scheme is to make full use of the advantages
of the finite element procedure even more important.
In Section3 a new integration technique for the
Lagrange-Galerkin method on triangles wiil be introduced
that is really just an extension of the area-weighting method
introduced by Priestley [457] and Morton et al. [42]. This
involves performing an exact projection from one arbitrary
trizsngular grid onto a dillerent arbitrary triangular grid,
and as such it has applications outside of the
Lagrange-Galerkin method. To demonstrate its effective-
ness a simple test problem is solved in Section4 and
preliminary results are also given for a standard test
problem involving the Navier-Stokes equations.
Consider the Cauchy problem for the scalar, linear
advection equation for u(x, )
w,+a(x, )-Vu=0, x e R,

t>90, (1.1

u(x, 0) = ug(x), (1.2}
where u, belongs to L2(R"), d being the number of dimen-
sions. For the purpose of proving certain theoretical results
the velocity field a{x, ) is assumed to be incompressible, i.e.,
V .a =0Vx, r but this is not a restriction in practice. We can
define characteristics paths or trajectories, X(x, s; ¢), in two
ways, cither as the solution to an ordinary differential
equation,

X(x, 5;5)=x, (1.3}

iQﬁﬂﬁlm‘t(xlx, s31), 1)
ot

(1.4)
or, if desired, as the solution of the integral equation,

X(x,5;t)=x +r a(X(x, s; 1), 1) dt.

In order to simplify the notation we will denote the foot,
or departure point, of the characteristic path at time 1" by x
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and its arrival point at time 1" * ' by y. In terms of the more
general notation above, these are x = X(y, 1" *'; t")and y =
X(x, #"; t"*1). A unique (absolutely continuous) solution to
Egs. (1.3), (1.4) can be guaranteed if it is assumed that
a(x, ¢) belongs to the Bochner space L'(0, T; (W =)7); see
Mizohata [40], for example. The solution to the original
partial differential equations (1.1), (1.2) are now given by
the relatibn

ulX(-, tt+17), 1+ 1y =u(-, 1). (1.5)
For an approximation, U" =3, U7¢,, at time 1", expanded
in terms of finite element basis functions ¢,, the direct
Lagrange-Galerkin method uses Eq. {1.5) to seek /"' in
L*(R9), satisfying

Wy =[U)gmdy Vi (16)

Equation (1.6) is obtained by taking the weak form of (1.5),
ie., multiplying {(1.5) by ¢,(y) and integrating over the
whole domain with respect to y, the L7 inner product over
R“ being denoted by <., ->. This is the same approach as
that used by Bercovier and Pironneau [3], Douglas and
Russell [12], and Pironneau [44], for example. More
recently this approach has been recast and generalized, as a
streamline diffusion scheme by Johnson [33] and Hansbo
[24,25]. There is also a closely linked finite difference
scheme. A review of the semi-Lagrangian scheme as applied
to meteorological problems can be found in Staniforth and
Coté [59] and some examples of its use for non-
meteorological problems can be found in Holly and
Preissmann [30]. Schohl and Holly [56], Priestley [46],
and Garcia-Navarro and Priestley [19]. The relationship
between the finite difference scheme and the finite element
method has been discussed in Bermejo [ 3].

A second, alternative, formulation has been proposed by
Benqué er af. [2] and this is referred to as the weak formula-
tion, or the weak Lagrange—Galerkin method, by Morton
and Priestley [41] because the adjoint of the differential
operator in Eq. (1.1} is applied to a test function. The
advantages of this approach have been rediscovered in
the use of the locally adjoint method (LAM) and the
Eulerian-Lagrange locally adjoint method (ELLAM); see
Herrera e af. [27-297 and Celia er al. [8, 9], for example.
The results in Section 2 and the new method introduced in
Section 3 are equally applicable to this formulation.

The convergence and unconditional stability of the
Lagrange-Galerkin method applied to the solution of (1.1)
is addressed in Morton et al. [42]). Also in this paper certain
special cases are mentioned where the stated results can be
improved upon. E.g., for one-dimensional constant linear
advection the Lagrange-Galerkin method with piccewise
linear elements on a uniform grid becomes third-order
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accurate, When a(x, ¢) is a smooth function the method is
second-order accurate on a non-uniforrn mesh. Other
theoretical results can be found in Lesaint [38], Siili [61],
Siili and Ware [63], and in Priestley [47], which contains
a short review of some of the properties of the
Lagrange—Galerkin method.

Apart from certain trivial problems, the integral on the
right-hand side of (1.6) has to be approximated in some
way. There appear to be three ways of accomplishing this in
a stable manner, all of which have problems. Priestley [45]
and Morton etal. [42] introduced the area-weighted
Lagrange—Galerkin method which, in contrast to normal
quadrature, approximates the velocity field in such a way
that the integrals can then be carried out exactly. This
approach is stable and converges and gives reasonable
results. However, there is, formally, a severe loss of accuracy
compared with the exactly integrated method and the high
order quadrature methods. it was aiso considered difficult
to generalise area-weighting to triangular grids. The EPIC
algorithm of Eastwood, see Eastwood and Arter [177, for
example, is essentially the direct Lagrange-Galerkin
method. It overcomes the conditions of the stability
theorem of Morton er ¢/. [42] by using a quadrature that
does not integrate quadratics exactly, namely a compound
trapezium rule. This same rule {or one with fewer sub-
intervals) must also be used to calculate the integrals
that give the elements of the mass matrix. Since the
Lagrange-Galerkin method loses accuracy rapidly if the full
mass matrix is not used, this means that many sub-intervals
need to be taken. This becomes very expensive in higher
dimensions if a product rule is used. The spectral
Lagrange-Galerkin method of Siili and Ware [63] uses
globally smooth basis functions. Convergence and uncondi-
tional stability are proven for Fourier polynomials even
under quadrature, as long as the relevant Gaussian quad-
rature is used. The problems with this method are its cost,
its propensity to give oscillations, and, in common with
spectral methods in general, the difficulty in applying it to
arbitrary domains.

In practice, then, because of the difficulties with the above
implementations, quadrature formulae have been generally
used. Although Lesaint [38] gives theoretical results
involving quadrature, little work had been done on this
aspect of the method. In Morton and Priestley [41] some
clementary results were given regarding the effects of quad-
rature. Possibly the most interesting result is the stability
theorem given by Priestley [45] and Morton et al. [42],
later extended to include diffusion by Siili [62], which may
be achieved by a simple Fourier analysis of the constant
coeflicient advection equation. The consequences of this
thcorem are quite wide ranging, Gauss—Legendre quad-
ratures are unconditionaily unstable, whilst Newton—Cotes
formulae, various Radau formulaec, and Gauss—Lobatto
quadrature formulae (of which vertex and Simpson’s rule
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are the lowest order versions) are only conditionally stable.
Even though Gauss-Lobatto is one of the best quadratures
as regards stability, in the case of Simpson’s rule the region
of stability is still only [0, 1], a considerable restriction
compared with the unconditional stability of the exactly
integrated scheme.

Up to a point these results are largely academic in that,
for the schemes using the higher order quadratures it can be
very hard to generate signs of instability, unless the CFL
number is kept in a very specific range, because the regions
of instability decrease in size and the amplification factor in
these unstable regions becomes closer to unity. In calcula-
tions involving the Navier-Stokes equations with all the
non-convective terms being treated implicitly, detecting
instabilities becomes even more difficult. Using bilinear
elements on rectangles for the rotating cone problem Mor-
ton et al. [42] were unable to make a 4 x 4 Gauss-Legendre
quadrature go unstable, although Priestley [45] showed
that for a one-dimensional constant coefficient example,
where it was possible to maintain the CFL number in the
unstable range, the scheme did eventually become unstable,
The danger, in practical calculations with the Navier—
Stokes equations, for example, is that near boundaries or
around stagnation points the scheme will be exposed to
fairly constant CFL numbers in the unstable region. Once
the unstable modes in the selution have been excited they
can then grow very quickly even with the more accurate
integration schemes. However, we know of no examples
where, in a physical situation, the quadrature instability has
caused any problems. Priestley [47, 48], though, has
suggested a version of the Lagrange—Galerkin method for
use in solving the advection problems associated with multi-
dimensional wave models; see Roe [352], for example.
Without diffusion the problems caused by the evaluation of
the integrais could become more apparent.

2. UNSTABLE IMPLEMENTATIONS OF
THE LAGRANGE-GALERKIN METHOD

In Priestley [45] and Morton et al. [42] it was shown
that when the right-hand side of (1.6) is evaluated using the
most common types of polynomial interpolating quad-
rature, Gauss-Legendre and Gauss-Lobatto, the method
becomes unconditionally unstable or conditionally stable,
respectively, a severe reduction on the unconditional
stability obtained with exact integration. We can talk of
“the” Lagrange—Galerkin method here since Morton and
Priestley [41] showed the equivalence of the two
approaches, even when quadrature was used, for the con-
stant coefficient advection equation used in the Fourier
analysis. Here we present some new results on quadrature
that again show wide classes of quadrature to be unstabie
for implementing the Lagrange-Galerkin method, Undoub-
tedly the exact projection method to be presented in the
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next section is far harder to implement than quadrature, but
the following results provide a strong incentive for doing so.
First, we recall the main result on quadrature from Priestley
[45] and Morton er al. [42].

THEOREM 1 (Priestley [451). If the right-hand side of
the Lagrange—Galerkin method, using piecewise linear
elements on a uniform mesh, is approximated by a quadrature
of the form

[ £66) e w0 04 3wy f ) + w1 (21)

where the weights wy, .., w,, .., and the quadrature points
0<x, < - <x,,<1 agre free to be chosen, except that we
assume that the quadrature evaluates the integrals of quad-
ratic polynontials exactly, then the method is unstable for
CFL numbers ve 2wy, x,) if

2wy < x|, (2.2)

From Eq.(2.2) it is then trivial to show that
Gauss—-Legendre quadrature, for which w,=0 leads to
unconditional instability. A little more work gives condi-
tional stability results for Gauss—Lobatto and Newton—
Cotes integration formulae. We now prove some new results
for quadrature-based schemes.

THEOREM 2. There are no unconditionally stable
implementations of the Lagrange-Galerkin method with
piecewise linear basis functions using symmetric four-point
quadratures of the form (2.1) that integrate quadratics
exactly.

Remark. By the Lagrange~Galerkin method it is meant
the method using the full mass matrix. Mass lumped, full or
partial, variants of the scheme are not included in this
theorem. Symmetry does not seem to be an overwhelming
constraint on the quadrature since all the integration
schemes used in practice are of this form. In one dimension,
for constant coefficient linear advection, the idea of using a
Gauss-Radau type quadrature, changing the fixed end
according to the flow direction, to circumvent Theorem 1,
seems quite attractive. Problems are evident in two-dimen-
sions though, particularly with the extension to triangular
elements.

Proof. Consider quadratures of the form (2.1) with
m = 2. From Theorem ! it is clear that we must have quad-
rature points at the ends of the interval, ie., x,=0 and
xa=1, Symmetry imposes th¢ further conditions that
Wo=Mw,, W, =w,, and x,=(1—x,). Writing down the
equations that enforce the quadratures exact integration of
quadratic polynomials and then eliminating all the variables
except x,, say, then leads to the condition for stability,

x(l—x,Pz1L (2.3)
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The maximum, for x, (0, 1), of the function on the left-
hand side of (2.3) occurs at x, = 1 and since & # ! we deduce
that there is no vaiue of x, that gives a stable scheme, hence
the result. B

Conjecture 3. There are no uncenditionally stable
implementations of the Lagrange—Galerkin method with
piecewise linear basis functions using symmetric five-point
quadratures, of the form {2.1), that integrate quadratic
exactly.

Assuming x, <v < X, , then we can write down the four
terms contributing to the right-hand side of the
Lagrange-Galerkin method as

r
Z u’kxk{(v—xk) U;’,2+(l _v+xk) U?wl}’
k=0

PR

Yo owex (v —x ) UT_ +(x,—V) Ui,
k=p+1

P

Z well = x (v~ x ) U_ + (1 =v+x,) Uy
k=0

m+1
T owdd=x {0 +v—x ) Ul + (=) UT, 1

k=p+1

Summing these four parts and adding, and subtracting,
summations over k=0 to k= p in order to complete the
summations from k=p+1 to k=m+ 1, we then obtain
the following expression for the right-hand side of the
Lagrange-Galerkin method:

M+

Y owl U {xe + v —xi}

k=0
+ U1 =2x4+v—2x,v+2x;}

+ UL = v et Xy — X))

P
+ Z W::—(U:-'-z{xk"—xi}

k=0
+U?—l{v_xk_3xkv+3x%'}
+UT{—=2v+ 2x, + 3x,v— 3x7)
+ UL =t v+ xi—xov}).

Since the quadrature evaluates quadratics exactly the sum
from k =0 to k =m+ 1 can be replaced with the values of
the integrals. Now, replacing terms by their Fourier trans-
forms and denoting the sine and cosine of the half angles by
s and c¢ respectively, we have

52+ ‘Z welv—x, ) — 4%+ x,(8s* —4sc))
k=0

D
+i (—2vsc +85%c Y, wilv—Xi) -’Ck)

k=0

1—

ey

(2.4)

3i9

which, for p =0, reduces to the expression used in the proof
of Theorem 1. Unfortunately, the expression seems to be too
unwieldy to be of much use outside of this case.

For five-point symmetric quadrature, conditions can
again be written down but now they only lead to restrictions
on the values of the weights and the positioning of the one
free abscissa. It is then possible to test a quadrature satis-
fying those conditions with the formula (2.4) to investigate
its stability. Some 100 million five-point symmetric quad-
ratures that integrate quadratics exactly and are stable for
ve [0, x,] were tried and all were found to be unstable for
some ve{x,, 1)

The main cost, as we will discuss more fully in the next
section, of the Lagrange-Galerkin method is not in the
inversion of the mass matrix, which can be done very
cheaply using preconditioned conjugate gradient methods
(Wathen [641]), nor is it in the cost of calculating the
integrals per se. The main cost is in calculating the trajec-
tory, i.e., the value of the departure point x and, even more
importantly, which ¢lement this point is in. Once this infor-
mation has been calculated the function evaluation is quite
trivial. It would make sense, therefore, if as much informa-
tion as possible were extracted from any one departure
point. That is, instead of just evaluating the function at the
departure point we also make use of its derivatives, again
quite trivial to calculate, and we use a quadrature by
differentiation formula; see Lanczos [37], Krylov [35],
Ghizzetti and Ossicini [21], Davis and Rabinowitz [10,
p. 105-106], Lambert and Mitchell [36], Hammer and
Wicke [23], and Struble [607], for example. These methods
do not seem as common as their counterparts that just use
function values, but they do have benefits in certain
application areas; see Squire [ 58] for a discussion of some
of these.

Despite the attraction of having to perform fewer trajec-
tory calculations and fewer searches to achieve a given order
of accuracy for the integration, we shall see, in the following
two theorems, that no useful Lagrange-Galerkin schemes
arise from using quadrature by differentiation formuiae.
First we consider quadratures given by Lanczos [37].
These are of the form

h 1 =1

| S dyx— T Cr b (740) + (=D S (h)),
0k=0 (2.5)

where

. (2n—k)!

C"_(n—k)!k!' (26)

THEOREM 4. The direct (and weak} Lagrange-Galerkin
methods with piecewise linear basis functions lead to uncondi-
tionally unstable schemes when the integrals are evaluated
using the Lanczos quadrature by differentiation formulae.
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Proof. In (25) we put f=U"x)¢;(y), f'=
U(x) ;(y) + U"(x) $(y). /2 =2U""(x) ¢;(y), and f*=0
Yk = 3. The higher denvauves vanish because, at a point,
the integrand is at most quadratic. However, the weights of
the remaining terms change, leading to a different
approximation of the integral, as the integrand is not quad-
ratic over the entire interval, but piecewise quadratic. The
formulae for £* and f? are not more complicated because for
constant coefficient linear advection x= y — a 47 and hence
dxfdy =1.

Dropping the subscript j from the test function ¢;(y)
and the superscript » from U” and integrating over

[yi— i, ¥,4 0 we use the following quantities:
o(y;-)=0, ¢y, )=1/h
pr)=1  F)=Vh ot 1
¢(}’_,‘+1)=01 ¢f(y1+;)= — /A,
U(V(J’,—J)) j—2—f-(l —V) Ujfl,
U, U,
U'lx(y;-1)) = Jﬁ]h =2
U(x(.Vj))= vU,_1+(1=v) U,
Ut =,
Ulx(yj e D=2U;+ {1 =) Uy,
Ui = U,
U’(x(y,-+1))=—’lh—-

The derivatives of ¢ are, at best, ambiguous at the ends of
the intervals, but we choose the most cbvious values. We
replace y; by y;* to distinguish the values from the intervals
[yj,l, »i] and [}J, ¥;4+1). Our approximation to (2.5) is
now given by

] w—1

o Z C.‘c+lhk+1(fk(yj—l)+(—l)kfk(yj-)

Ok 0

+ AT (=D ) (2.7)

Expanding the terms in (2.7) with the e¢xpressions given
above and simplifying we then obtain the following expres-

sion for the right-hand side of the Lagrange—Galerkin
method:

1
— {2C10:U,

0

— 20U, =201 —v) U, +vU,+ (1 =) U, )
+CU—U,_,+ U, +U,— U )).

i+ {1—v) Uj)+C’21(vl]j—2+(1 -v) U,
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Replacing the {’s with their Fourier transforms, where
again s =sin(8/2) and ¢ = cos(#/2), we then obtain that the
transform of the right-hand side is

t

pa {2C7(1 — 2v(s* + isc)) + CH — 45> + 8v(s* —ise + is?c))
o

+ CH8s* (1 — 57 —isc))}.

Before calculating the amplification factor, A, the algebra
can be simplified somewhat by assuming v =0. The equa-

tion for the modulus of the amplification factor then turns
out to be

45 45%
1__ 2
{ 3779 }"'

1 Zevngeon 20 et Eonn
=E{—165C1C2+32s CC"+6455CTC"

3
— 645 CICT+4CT +165°CT 4+ 645°CT
—64s5CT —325°CCr). (2.8)

Using the fact that C7/Cf=1Vn, (2.8) can be simplified to
give the following condition for the avoidance of uncondi-
tional instability,

Ci+6C5-3C5<0. (2.9)
For the improved trapezium rule we have C3=0, C;=1,
C1=6,and C} = 12. Substituting into (2.9) we immediately
see that this 1s an unconditionally unstable scheme. For
n=3 we use the values from Eq. (2.6) and it is then quite
easy to deduce that in order to avoid unconditional
instability we need 2» — 1 <0. This is clearly untrue and
hence the result. Mass lumping does not lead to any -useful
schemes. Nor does trying to alter the ambiguous values of
the derivatives of ¢ that we have to assume are at the ends
of the intervais. |

Remarks. It is very disconcerting that this result is
achieved by just considering the case v=0. Even
Gauss—Legendre quadrature managed tc be stable for v=20.
Although both types of quadrature have similar error
estimales involving £ 2"(y), where i is some unknown point,
the Gauss-Legendre quadrature ¢ is strictly within the
domain of integration. With the Lanczos formulae this is
not so, see {371, and singularities outside the domain of
integration can seriously affect the convergence of the quad-
rature; see Squire [58], for example. Since the piecewise
lingar functions we are dealing with do not possess con-
tinuity of derivatives across elements, this explains the
instability even at v=0.

We now consider quadrature by differentiation formulae
with nodes purely internal to the region of integration. It is
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possible to consider formulae with nodes at the extremities,
as in [42], but this results in much more complicated
algebra and does not seem to exclude any other common
rules. The main purpose of the following theorem is to
exclude some particularly accurate rules quoted by
Ghizzetti and Ossicini [21]. The least accurate of these
(formula (4.13.10) of [211} uses only two abscissae to give
the approximation

[ s dx=si-a)+ 1)

+0.09629177[f '(—o) + f'{a)]
+0.02930120[ f*( —2) + f"(2)] + R(S),

where
o=0.6292111 and R(f)=0
if f{x)is a polynomial of degree <7.
THEOREM 5. The direct {or weak) Lagrange—Galerkin

method evaluated using a quadrature of the form

h d L
J /raxs X% wo k) (210)

P=0 k=1

that integrates quadratics exactly and has abscissae 0 < x| <
X< - <x, <1 leads to an unconditionally unstable
scheme,

Proof. The powers in & can immediately be disregarded
as they cancel with terms from the definition of the
derivatives, with the remaining power cancelling with a
similar term from the mass matrix. As discussed in
Theorem 4 we need only consider d< 2 and we will also
only consider v < x,. The integral on the right-hand side of
the Lagrange-Galerkin method is then approximated by to
parts. From element [ j— 1, j] we obtain

Nk

Wi of U x(l—xpe+ )+ Uixp(x, —v) }
k=1

+ Z Wk,l{Uj~:(1‘ —2x,+ )+ thzxk_v)}

k=1

+ 2w {2U-U, )}

k=1

and from element [/, j + 1] we obtain

m

Z wk.l){Uf(l —x (1 —x, +v)+ U, (1 —xk)(xk*")}
k=1

s

+ Z ”’k,l{Uj(_z-'_z'kav)-{- Uj+1(1—2xk—v)}
k=1

+ > Wi A 22U, — Uy )}
k=1

S81/112/2-8
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Combining these two parts we see that we have an
approximation of the form (2.10) to the integral

, .
J (Uj_(x— x4+ xv) + U, (1 = 2x + 2x* + v — 2xv)
4]

+ U (x—v—x"+xv))dx

and, since the quadrature rule integrates quadratics exactly,
we can simply replace both summations by JU,_, + iU, +
U, 1+ (v/2)(U;_,—U;.,). This has a Fourier transform
of 1 —25%/3 —2ivsc and it is then a trivial matter to show
that for stability we require

vis?(1 —s?) €0,

Except in the case that v =0, this is clearly untrue and hence
the result. |l

THEQREM 6. No guadrature of the form
[" rxdsmafi—a)+ 20— fO)+af@) 210)

with 220, leads to an unconditionally stable scheme when
used to approximate the integrals arising from the
Lagrange—Galerkin method (1.6).

Remark. Although this result appears to be weaker than
the others proved here and in [42], it 1s a surprisingly
general result. The previous work has tended to imply that
there is some stumbling block in using a quadrature rule
that integrates quadratic (and higher order) polynomials
exactly. Since the vast majority of quadrature rules, with a
weighting function of one, increase their accuracy by
integrating ever higher degree polynomials in x exactly, it is
tempting to ask what happens if we attempt to integrate
other functions of x exactly instead. This can be achieved
using Eq. (2.11) and choosing different values of a. For
example, with

_ sinh{a}—a

" cosh{a)—1
the guadrature integrates the functions 1, sinh(x), and
cosh(x) exactly. With

_a-sinl@

1 —cos(a)

the quadrature integrates the functions 1, sin(x), and cos(x)
exactly.

Proof. Transforming the quadrature to the range [0, 1]
we have

! <% 0 1y @« 1
[ rnasd o+ a-a7(3)+5 /0
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With our integrand f(y)=U(x}¢,(y) we obtain, for the
right-hand side of the jth Equation (assuming that v < 1),

i o
Z(Uj_'+2Uj+ Uj+l)_Z(Uj_1_2Uj+ Ui.)

v ¥
+ S (Ui =2t Uy )45 (U= U (212)

J

The Fourier transform of (2.12) is 1 — 52+ as® — 2vors® —
2ivsc and hence for stability we require, after simplification,

—24 2u0—dva+4v? 0. (2.13)
It is now an obvious condition (v =0) that we require

< (2.14)

=

The maximum value of (2.13) occurs at v =1 in which case
the condition (2.13) becomes } < 0, independently of «, and
hence the result. Cases with 2 <0 can be deait with in an
analogous manner. ||

CoRrOLLARY 1. Simpson’s rule has the largest stability
region of quadrature rules of the form (2.11).

Proof. 1t is a simple task to calculate the maximum
value of v allowed by (2.13) for a given a. Not surprisingly
we find that the maximum value (over ¢} of these maximum
values occurs at the limit of (2.14), ie, «=1. This is then
Stmpson’s rule. |

3. A STABLE IMPLEMENTATION ON
TRIANGULAR ELEMENTS

3.1. Description of the Method

In the preceeding section it was shown that the results
given in Morton et a/. [42] can be extended to even wider
classes of integration rules, including quadrature by dil-
ferentiation formulae which would have been particularly
beneficial to the Lagrange—Galerkin method because of the
reduction in time spent calculating the positions of the
departure points. It was also shown that it is not just those
formulae that interpolate polynomials exactly that cause the
method to be unstable.

In other application areas, namely grid adaption and
triangular muitigrid, it is necessary to project from one
arbitrary triangular grid onto a second arbitrary triangular
grid, just as it is in the LagrangeGalerkin method.
Although Gauss-Legendre quadrature can still lead to an
unconditionally unstable scheme even when diffusion is pre-
sent, Siili [62], the author is not aware of any published
results for the Navier-Stokes equations, say, where the
instabilities inherent in the quadrature approximated
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Lagrange—Galerkin method have caused any noticeable
problems. However, in these other related application areas
they have been observed; see Peraire et al. [43].

The stable implementation proposed here is an extension
of the area-weighting technique of [45, 42]. The situation
we are faced with is shown in Fig. 1, where the arbitrary
background grid is depicted as the regular grid (purely for
demonstration purposes only, it must be stressed ) and the
triangle we wish to integrate over as the irregular triangle,
with nodes 1, 6, and 9 as depicted in the figure. The
integrand of (1.6) is now formed by the product of the linear
function over the triangle (1, 6, 9) with the piecewise linear
functions defined on the background grid. The integrand is
then made up of piecewise quadratic functions, with the
pieces being formed by the intersection of the background
grid with the triangle in question.

The shapes of the regions caused by the intersections
can be triangles, quadrilaterals, irregular pentagons, or
irregular hexagons; i.e., they can have 3, 4, 5, or 6 nodes and
sides. Given the positions of these nodes, and the values of
the two linear functions at these points, we can then quite
simply calculate the integral exactly, for example, by split-
ting the region into triangles for which an analytic formula
can be written down quite simply in terms of the nodal
values. We shall now concentrate on the more difficult
question of determining the regions.

This problem is greatly simplified if extra information
about the grid is stored, apart from the usuai connectivity
table. The most important new information to be stored is
that of which two elements are either side of a given side and
which sides go up to make a given element. Less impor-
tantly it is aiso useful to store node—node connectiens and
which two nodes form a given side. It is not strictly
necessary to store any additional information as it could all
be calculated as needed, directly from the connectivity table,
but by storing the first two arrays mentioned, in particular,
the computational time will be substantially reduced. The

FIG. 1. The initial “front” for determining the regicns of integration.
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second pair of arrays are much more readily calculated “on
the fly” and so these should be dropped first if storage is a
problem. However, all of these arrays are integer arrays and
their storage is not likely to be a problem in practice.

The logic and data structure in the region identification
procedure is perhaps most analogous to that used in moving
front grid generators (see Cavendish [7], Jin and Wiberg
[32], Lo [39], and Sadek [55], for example), but is much
simplified as there are no nodes or topology to generate,

The vertices of the triangle are first transported by the
velocity field, there being no advantage with arbitrary
trianguiar grids in transporting the entire triangle by its cen-
troid value as in [42]. Indeed by transporting the vertices,
rather than the centroids, we formally retain the accuracy of
the method and maintain conservation because we are
again mapping the whole domain onto the whole domain.
This is not the case with the area-weighting implementation
in [45,42]. The existence of this approximate, but welil-
defined, transformation x—y will hopefully make the
theoretical development of the method much easier than
would otherwise be the case. This transportation gives us
the positions labelled 1, 6, and 9 in Fig. 1. The interior of the
triangle is then assumed to have moved in a linear manner,
governed by the movement of the nodes and, hence, the area
we wish to integrate over remains a triangle. That is, we
make the approximation

X(1—p—g)y +py2+qy5 1" 1"
A{l—p—@)X(y,, ")+ pX(y, 7517
+qx(yh f"+i; I") (31)

to the trajectories over an element parameterised by (p, g)
and with nodes y,, y,, and y,. For the Lagrange—Galerkin
method this indeed represents an approximation since,
aside from uniform translations and uniform rotations,
triangles are not mapped onto triangles by a more general
velocity field. With the extra grid information that is now
stored about the sides of the background mesh it is a fairly
easy task to determine the points where the transported
triangle intersects the background mesh. These points are
labelled in an anti-clockwise fashion. The initial front is then
given by the edges {(1,2), (2, 3), .., (13, I}}. Choosing an
edge from the active front, (1, 2) say, we then proceed to
identify a region for integration, by always moving in the
most anti-clockwise sense possible. From node 2 there are
three possible points we could move to, namely, node 3, the
node marked A4, and the unmarked node below A4 on the
background mesh. This latter node can be immediately
discounted. Of the two remaining possibilities it is clear the
edge (2, A) is the one we tequire. From A, knowing that we
have come from 2, we readily identify the next edge as
(4, 13) and from there we use the existing edge (13, 1) to
complete the region. The nodes of the new region are, by

323

construction, aiready labelled in the anti-clockwise sense
which makes the integration over the region that much
more simple. Having identified this first region it only
remains to delete the edges (13, 1) and (1, 2} from the front
and insert the two new edges, giving a new front {(2, 3),
(3, 4), .., (13, 4), (4, 2)}. We can then continue to identify
all the other regions in exactly the same manner. Complica-
tions arise, as in the moving front grid generation codes,
when a front splits. Once recognised as having happened,
each separate front can be treated as described before.

This procedure is obviously entirely general and in par-
ticular copes with the trivial case of the clement we are
integrating over lying completely within a triangle on the
background mesh and with the case where entire elements
of the background mesh are totally enclosed within the
element over which we are performing the integration.
That is, we are not dependent on an element of one mesh
intersecting with elements of the other mesh.

As we have said before the problem of transferring infor-
mation from one grid to another has applications apart
from its use with the Lagrange—Galerkin method. In one of
these other application areas, namely grid rezoning, very
similar appearing problems have been solved; see Ramshaw
[50,51] and Dukowicz et al. [14-16], for example. This
method involves replacing the integrand, g(x) say, by V. F,
where FF=F(x) is some flux to be determined from ¢(x). The
purpose of this is to then apply the Gauss divergence
theorem to simplify the integrals considerably. However,
due to the Galerkin projection in (1.6), our integrand,
unlike those considered in the grid rezoning problem,
depends upon values from both meshes. In particular this
means that the vector functions F{x) cannot be constructed
in a single pass over the old mesh with the integrals then
being evaluated in a single pass over the new mesh. Hence,
for the exact projection problem, it scems that the direct
approach described here is more appropriate.

Clearly the code for doing this procedure in the general
situation is significantly longer and potentially more time
consuming than the linear interpolation needed for inter-
polating at quadrature points. In the next section the

TABLEI

Time (in seconds) for the Rotating Cone Problem on a SUN
SPARC 2 Workstation for Various Implementations of the
Lagrange—Galerkin Method

Tpt. Gauss; Exact:
no searching 7pt. Gauss Exact no s¢arching
10x 10 12 52 39 24
20% 20 53 755 231 102
40 % 40 264 9947 1994 435
80 x 80 1465 101851 25469 1814
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FIG. 2. 10x 0 grid: 135 nodes; number of elements is 228,

rotating cone problem is used as a test case. For the present
purpose, though, we just use it as a means of extracting and
comparing run times for performing the projections with the
standard seven-point Gaussian quadrature and by the exact
projection method presented here. The meshes used are
shown in Figs. 2-5. The times for 40 time-steps of the
rotating cone problem are shown in columns 2 and 3 of
Table I. Rather surprisingly we see that the exact projection
is substantially quicker than the seven-point quadrature.
There are two reasons for this. The least important is that
much of the new code uses operations that only require
integer logic and hence are very fast, More important is the
fact that the integration part of the code is a minor con-
sideration compared to the calculation of the trajectories
and, in particular, determining from which element of the

FIG. 3. 20 x 20 grid; 496 nodes; number of elements is 910.

FIG. 4. 40 x40 grid; 1911 nodes; number of elements is 3660.

background grid a departure point came. Assuming an
unstructured mesh in the exact projection method, we have
to do one global search for each node, which means we have
to de nele/2 global searches (nele being the number of
elements and assuming that there are roughly twice as many
elements as nodes). For the quadrature case it is possible to
do only nele global searches if one searches only for the
departure point of the first quadrature point from the
element and then does local searches to find the elements
containing the departure points of the other six abscissae.
The searching used in Table I was very simple and, as a
result, on the two finer meshes anyway, it caused us to have
to perform approximately 2(nele) global searches. Even
allowing for this factor, though, we see that the exact
method would still be faster.

FIG. 5. 80 x 80 grid; 7521 nodes; number of elements is 14720,
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Moreover, recall that for the exact projection case it was
found advisable to store information about sides. This infor-
mation can also be used in the trajectory problem to keep
track of where the departure point lands, removing any
need to perform any global searches. This can significantly
reduce the cost of the exact projection method, column 4 of
Tabie [. Of course if we use the same information for the
trajectory problem in the quadrature case then the benefit is
even greater and the quadrature implementation is at last
faster than the exact projection method, columnl of
Table I. Note, though, that it appears that on a fine enough
mesh the exact projection method would still be faster.

3.2, Theoretical Results

Like the area-weighting algerithm of [42], to which this
method is very closely related, the procedure here reduces to
exact integration in the case of constant coefficient advec-
tion and, hence, unconditional stability, so a more general
velocity field must be considered. Fortunately, much of the
theory for area-weighting in [42] is directly applicable to
the case here. All that is required is to replace Lemma 3.1 of
(427 with

LemMa 1. If the wvelocity field a(x,t) belongs to
L=(0, T; (W>™)), then the distance between the true foot of
the trajectory and the approximate foot given by (3.1) is of
the order h* A1, where h is a measure of the mesh size and d
is the rumber of spatial dimensions (d =2 here).
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The stability of the method, with the restriction on a(x, 7)
given above, can now be obtained immediately by using
Lemma 1 in Theorem 3.4 of [42]. Actually, for the stability
result, we can wecaken the condition on a to a(x, f)e
L0, T; (W' =)9), since an error 4 At in the foot of the
trajectory is sufficient to prove stability.

Convergence is proved using Theorem 3.6 of [42]. Here
we can make extra use of a(x, 1)e L0, T; (W**)9) to
obtain an error of order A2 For the area-weighting techni-
que of [427] only a first-order error estimate was obtained.
This represented a loss of accuracy over the exactly
integrated method which is second order, although in
experiments on highly non-linear problems (Priestley
[45]), the first-order estimate for the area-weighting techni-
que was shown to be pessimistic. For the exact projection
method, which as we have said is not exact for general
velocity fields in the context of the Lagrange-Galerkin
method, the error caused by the approximation of the feet of
the trajectories does not alter the error estimate of the
exactly integrated method and hence our earlier comment
about the adequacy of the trajectory approximation.

4. NUMERICAL RESULTS
4.1. Rotating Cone Problem

This commonly used two-dimensional test problem looks
at the advection of a cone in a fixed, rotating velocity field
governed by the equation,

u +2a(—y, x)-Vu=0

10000

0.9000

0.8000

D.7000

0.6000

{45000

0.4000

0.3008

0.2000

FIG. 6.

Initial data for the rotating cone problem.



326

1.0000

0.9000

£.6000

0.6000

0.5000

03008

0.2000

01000

0.0100

0.0010

0.000¢

00001

-0.0010

Q0100

A. PRIESTLEY

FIG. 7. Solution on the 80 x 80 mesh aiter 100 revolutions.

FIG. 8. Plot of (exact solution—approximate solution) after 100 revolutions.
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F1G. 9. Vorticity for the Re = 100 case on 40 x 40 mesh.
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FIG. 10. Velocity arrows for the Re = 100 case on 40 x 40 mesh.

on the domain Q2=(—1,1)x{(—1,1), with periodic
boundary conditions. The initial data consists of a cos® cone
centred at ( —1, 0) and of radius . If r* = (x + {}* + y* then

cos’2nr  for rxi
H=
0, otherwise.

The initial data is interpolated rather than L>-fitted and is
shown in Fig. 6. The four meshes used are shown in Figs.
2-5. Although these meshes are fairly smoothly varying (not
that this is particularly necessary for the exact projection
method to work), it is important to note that the meshes are
totally irregular (as opposed to the explanatory diagram of
Fig. 1) and have no preferred directions. This is an impor-
tant advantage over the triangle based upwind finite
difference schemes, see Deconinck er al. [11] and Roe et al.
[53], for example, where the results seem to be extremely
dependent on the triangles being arranged in a way sym-
pathetic to the problem being considered. The time-step is
chosen to be A1=0.025 and 40 time-steps are performed;
1.e., one complete revolution is done.

The results for this problem are summarized in Table 11
for the integrals evaluated with seven-point Gaussian quad-
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-7

FIG. 11,

rature and in Table III for the integrals evaluated by the
exact projection method. As we might expect there are no
significant differences between the two methods for this
problem, the quadrature giving a very accurate representa-
tion of the integrals. Conservation, though, is better with

TABLE Il

Results after One Revolution for the Rotating Cone Problem with
the Integrals Evaluated Using Seven-Point Gaussian Quadrature

Vorticity for the Re = 100 case on 80 x 80 mesh. Contours as in Fig. 9.

the exact projection method. Since for the rotating cone
problem it is actually an exact implementation of the
integrals in (1.6), we might expect it to be exactly conser-
vative, but rounding errors and, more importantly, errors in
inverting the mass matrix mean that this is difficult to

TABLE II1

Results after One Revolution for the Rotating Cone Problem with
the Integrals Evaluated Using the Exact Projection Method

Percentage of

Percentage of

Maximum Minimum conservation I, error Maximum Minimum conservation I, error
10x 10 030446 —5.82863x 102 91.66835 0.134232 i0x10 0317 —4.74561 x 1072 99.993 0.133472
20x20 077387 —2.79735 % 102 9983719 489047 x 102 20x 20 0.78536 —2.75947x 102 99.99996 47934 x 10?2
40 x40 097005 —1,06939 x 102 100.16463  8.33986 x 103 40x40 096876 —9.35397 x 1072 100.00000 847666 x 103
80x 80 0995 —281922x 1073 100.13378 163186 x 1073 80x80 09939 —248703 x 1072 100.00000 178774 x 1073
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FIG. 12. Velocity arrows for the Re = 100 case on 80 x 80 mesh.

achieve in practice. In Fig. 7 we see the solution on the
80 x 80 mesh after 100 revolutions. As can be seen this is
very similar to the initial data and so in Fig. 8 the exact
solution minus the approximate solution has been plotted.
This function has a minimum of about —4x10~% and a
maximum of about 5x 10~%

42, Lid-Driven Cavity Problem

This problem, with results, can be found in Ghia er al.
£20] and Gresho efal, [22], for example. The results
presented here will be most directly comparable to those in
[207. We solve the incompressible Navier—Stokes equations
in the primitive variables, i.c.,

%—:‘+u-Vu+Vp=vV2u (4.1)
V-u=0, (4.2)

where u={u, v} is the velocity and p is the pressure devia-
tion from hydrostatic pressure. The kinematic viscosity is

10
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FIG. 13, Vorticity for the Re = 1000 case on 40 x 40 mesh. Contours as in Fig. 9.
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FIG. 14. Velocity arrows for the Re = 1000 case on 40 x 40 mesh.

10

\

denoted by v and the Reynolds number is defined to be
Re=UL/v, where U is a reference velocity and L is a
reference length. In the lid-driven cavity problem U=L =1.
The domain of the probiem is {0, 1]x[0,1] and the
boundary conditions are given by

v=0, everywhere
u=1, y=1, O<x1,
u=0, otherwise.

To apply the Lagrange-Galerkin method to Eq. (4.1) we
replace the convective terms by the Lagrangian derivative
D/ Dt to obtain

D
Y Yy V=0

Dt (43)

The finite element method can then be applied to Eqgs. (4.3},

(4.2) in the usual way, with the Lagrange-Galerkin method

being used to treat the convective terms and all the other
10

}

F1G. 15. Vorticity for the Re = 1000 case on 80 x 30 mesh. Contours as in Fig. 9.
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terms being treated implicitly. This results in a matrix
system of the form

M+K B™/u E(u)

(5" G- (0
where M and K are the symmetric mass and stiffness
matrices, B is the gradient matrix, and E(u) is just the
right-hand side from the Lagrange-Galerkin method. An
important feature of (4.4} is that the matrix equations
are symmetric. This is a consequence of the use of the
Lagrange-Galerkin method and means that we can use the
very efficient, and simple, conjugate gradient based methods
to solve the equations; see Ramage and Wathen [49] for
further details.

The simplest choices of basis functions for us to use
to test the exact projection implementation of the
Lagrange-Galerkin method are piccewise linear functions
for the velocities and piecewise constant functions (on the
same mesh ) for the pressure. This choice allows us to use the
previously generated meshes, particularly the 40x 40 and
&0 x 80 meshes and makes it quite simple for us to extend
this new implementation to the Navier-Stokes equations,
but unfortunately this choice violates the Babuska-Brezzi
stability condition; see [1,6]. However, we can use a
stabilization technique such as the method of Hughes and
Franca [31]. Although this method has been criticized
[137, it is preferred here over the extension in [ 13], because
the symmetric nature of the Stokes problem, represented by
(4.4), is maintained. The method, which has been further
analysed in Kechkar and Silvester [34], consists of replac-
ing the finite clement discretization of Eq. (4.2) by

(44)

@V-u)+8 ¥ [ hlpd.lgl.ds=0 VgeP, (45)

eely ¢

where P, is the piecewise constant pressure subspace, u; and
p; are the discrete approximations to u and p, I, is the set
of all interelement boundaries, #, is the length of edge e, and
[ - 1. is the jump operator across the boundary e.

One criticism of this procedure is that Eq. {4.5) cannot be
assembled in the usual element-by-element manner because
of the interelement jump operator. However, due to our
storage of side information for the efficient implementation
of the exact projection method, it is very simple for us to
assemble these terms. The other main criticism is due to the
appearance of a parameter ff >0 that needs to be chosen.
Although some insight has been gained in how to choose
this constant for the Stokes problem, Wathen and Silvester
{65] and Silvester [57], we have found the choice fairly
forgiving in that there seems to be quite a large range where
the value stabilizes the discretization without having any
undue effect upon the solution quality. If we were concen-
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trating on the accuracy of the solutions here, rather than
just demonstrating the implementation of the exact projec-
tion method, the precise choice might be more crucial. This
will obviously be a point for further investigation.

The finest mesh used here has less than half the nodes of
the coarsest mesh used in Ghia eral [20]. Although
Gresho et al. [22] did use coarser meshes, they were using
higher-order basis functions and had made some attempt to
adapt the grids to the problems. The vorticity plots given
here are directly comparable to the reference sofutions given
in [207. It must be stressed that the solutions presented here
are to demonstrate the implementation of the exact projec-
tion method rather than the Lagrange-Galerkin method
itself. More realistic calculations are clearly a high priority
for the future. By using grids adapted to the flow, par-
ticularly to resolve the boundary layer, we would clearly
hope to obtain far superior solutions to the ones presented
here. '

The first case is that with a Reynolds number of 100. We
give plots of vorticity, @ =v,—u,, and velocity arrows. In
Figs. % and 10 the results from the 40 x 40 mesh are given
and in Figs. 11 and 12 the results from the 80 x 80 mesh.
A similar set of results is then given, Figs, 13-16, for the case
Re = 1000. The results for Re = 100 are very good but even
at the still fairly low Reynolds number of 1000 the lack of
resolution of the meshes is beginning to show. Comparing
the solutions with those given elsewhere, in [20] for exam-
ple, we see that the main vortex, in both cases, is of the
correct strength and in the correct position. However, upon
closer inspection we see that the smaller, and weaker,
features in the corners are not well resolved, for example, in

FIG. 16. Velocity arrows for the Re = 1000 case on 80 x 80 mesh.
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the top left corner of Figs. 14 and 16 {or 13 or 15). While the
finer grid solution still bears a very strong resemblance to
the solution given in [20] it is equally clearly not resolving
the flow near this corner. The method copes as the Reynolds
number increases, but the lack of resolution becomes
steadily more acute. We are very confident that this is
caused by using an inappropriate mesh and not by a failing
of the solution procedure described here. Time-steps ranged
from A:r=0005 to Ar=1, with the accuracy for these
steady-state type problems being governed more by the
accuracy of the trajectory soiver rather than the time-step as
such. Clearly for 4¢=1 much more care is required in
solving the trajectory equations.

5. CONCLUSIONS

The main results of the paper are of two kinds. First in
projecting from one arbitrary triangular grid to another it
has long been known that for the Lagrange-Galerkin
method [42] certain families of quadrature formulae give
stability problems. These same problems have more recently
been observed in situations not caused by the use of the
Lagrange—Galerkin method, [43]. In this paper we have
shown that much wider classes ol quadrature than pre-
viously thought suffer from stability problems.

Second, because of the aforementioned problems with
quadrature, an efficient method of exact projection from
one arbitrary triangular grid to another has been intro-
duced. This provides an unconditionaily stable approxima-
tion for the Lagrange—Galerkin method with the same error
as if the method had been evaluated exactly. Moreover, it
completely solves the problem in the cases of grid adaption
and of triangular multigrid, Early numerical results for the
Lagrange—Galerkin method using this technique applied to
the Navier—Stokes equations are presented and appear
quite promising, although this is the main area for further
work.
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